Сверхпроводимость

Явление сверхпроводи́мости состоит в том, что у некоторых металлов и сплавов происходит резкое падение удельного сопротивления вблизи определенной температуры Тс, называемой температурой перехода в сверхпроводящее состояние. Вещества, обладающие такими свойствами, называются сверхпроводниками. При температурах ниже Тс сопротивление у сверхпроводника полностью отсутствует (равно нулю). В настоящее время известно свыше 500 чистых элементов и сплавов, обнаруживающих свойство сверхпроводимости. Температурный интервал перехода в сверхпроводящее состояние для чистых образцов не превышает тысячных долей градуса, и поэтому имеет смысл определенное значение Тс. Ширина интервала перехода зависит от неоднородности металла, в первую очередь, от наличия примесей и внутренних напряжений. Известные в настоящее время температуры Тс изменяются в пределах от 0,155 К (Bi Pt) до 23,2 К (Nb3Ge).

Изотопический эффект у сверхпроводников заключается в том, что температуры Тс обратно пропорциональны квадратным корням из атомных масс изотопов одного в того же сверхпроводящего металла.

Содержание

История открытия

В 1911 г. голландский физик Камерлинг Оннес открыл явление сверхпроводимости. Он обнаружил, что при охлаждении ртути в жидком гелии её сопротивление сначала меняется постепенно, а затем при температуре 4,1 К очень резко падает до нуля. Это явление было названо сверхпроводимостью. Впоследствии было открыто много других сверхпроводников.

Сверхпроводники и магнитные поля

Достаточно сильное магнитное поле при данной температуре разрушает сверхпроводящее состояние вещества. При действии на сверхпроводник магнитного поля температура Тс снижается.

Магнитное поле с напряженностью Нc, которое при данной температуре вызывает переход вещества из сверхпроводящего состояния в нормальное, называется критическим полем. При уменьшении температуры сверхпроводника величина Нc возрастает.

Сверхпроводящие свойства проводников исчезают при пропускании через них сильного электрического тока, создающего магнитное поле, разрушающее сверхпроводящее состояние сверхпроводников.

Внешнее магнитное поле, более слабое, чем критическое, не проникает в толщу сверхпроводника. Магнитная индукция в объеме сверхпроводника всегда равна нулю.

Переход вещества в сверхпроводящее состояние сопровождается изменением его тепловых свойств. Так, в отсутствие магнитного поля при температуре перехода Тc скачкообразно изменяется теплоёмкость. При наличии магнитного поля изотермический переход из сверхпроводящего состояния в нормальное связан со скачкообразным изменением теплопроводности и теплоемкости. Эти явления являются характерными признаками фазового перехода II рода.

Квантово-механическая теория

Квантово-механическая теория явления сверхпроводимости рассматривает его как сверхтекучесть электронов в металле с присущим сверхтекучести отсутствием трения. Электроны проводимости движутся в сверхпроводнике беспрепятственно — без «трения» о неоднородности кристаллической решетки. Основная особенность сверхпроводников заключается в том, что в них возникает взаимное притяжение электронов с образованием электронных пар (так называемые "куперовские пары"). Причиной этого притяжения является дополнительное к кулоновскому отталкиванию взаимодействие между электронами, осуществляемое под воздействием кристаллической решетки и приводящее к притяжению электронов.

В квантовой теории металлов притяжение между электронами (обмен фононами) связывается с возникновением элементарных возбуждений кристаллической решётки. Электрон, движущийся в кристалле и взаимодействующий с другим электроном посредством решётки, переводит ее в возбужденное состояние. При переходе решётки в основное состояние излучается квант энергии звуковой частоты — фонон, который поглощается другим электроном. Притяжение между электронами можно представить как обмен электронов фононами, причем притяжение наиболее эффективно, если импульсы взаимодействующих электронов антипараллельны.

Возникновение сверхпроводящего состояния вещества связано с возможностью образования в металле связанных пар электронов. Оценка показывает, что электроны, образующие пару, находятся друг от друга на расстояниях порядка ста периодов кристаллической решётки. Вся электронная система сверхпроводника представляет собой связанный коллектив, простирающийся на громадные, по атомным масштабам, расстояния.

Если при сколь угодно низких температурах кулоновское отталкивание между электронами преобладает над притяжением, образующим пары, то вещество (металл или сплав) остается по своим электрическим свойствам нормальным. Если же при температуре Тc происходит преобладание сил притяжения над силами отталкивания, то вещество переходит в сверхпроводящее состояние.

Важнейшей особенностью связанного в пары коллектива электронов в сверхпроводнике является невозможность обмена энергией между электронами и решеткой малыми порциями, меньшими чем энергия связи пары электронов. Это означает, что при соударении электронов с узлами кристаллической решётки не изменяется энергия электронов и вещество ведет себя как сверхпроводник с нулевым удельным сопротивлением. Квантово-механическое рассмотрение показывает, что при этом не происходит рассеяния электронных волн на тепловых колебаниях решётки или примесях. А это и означает отсутствие электрического сопротивления.

Для того чтобы разрушить состояние сверхпроводимости, необходима затрата определенной энергии. При температуре Т = Тc происходит нарушение связанных состояний электронных пар, прекращается притяжение между электронами и явление сверхпроводимости перестает существовать.

Применение сверхпроводимости

Достигнуты значительные успехи в получении высокотемпературной сверхпроводимости. На базе металлокерамики получены вещества, для которых температура Тc перехода в сверхпроводящее состояние превышает термодинамическую температуру 77 К (температуру сжижения азота).

Явление сверхпроводимости используется для получения сильных магнитных полей, поскольку при прохождении по сверхпроводнику сильных токов, создающих сильные магнитные поля, отсутствуют тепловые потери. Однако в связи с тем, что магнитное поле разрушает состояние сверхпроводимости, для получения сильных магнитных полей применяются особые сверхпроводники II рода — некоторые сплавы, тонкие сверхпроводящие пленки. В такие сверхпроводники магнитные поля с напряженностью большей чем Нc проникают в вещество в виде нитей, пронизывающих образец. Вещество между нитями оказывается сверхпроводящим, и сильные токи могут привести к созданию сверхсильных магнитных полей. Широкое распространение имеют магниты, основанные на сверхпроводящих соленоидах.

 
Начальная страница  » 
А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ы Э Ю Я
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 Home