Метод классической молекулярной динамики

Метод молекулярной динамики (метод МД) — это метод, в котором временная эволюция системы взаимодействующих атомов или частиц отслеживается интегрированием их уравнений движения [1] [2] [3]

Содержание

Основные положения

  • Для описания движения атомов или частиц применяется классическая механика. Закон движения частиц находят при помощи аналитической механики.
  • Силы межатомного взаимодействия можно представить в форме классических потенциальных сил (как градиент потенциальной энергии системы).
  • Точное знание траекторий движения частиц системы на больших промежутках времени не является необходимым для получения результатов макроскопического,(термодинамического) характера.
  • Наборы конфигураций, получаемые в ходе расчетов методом молекулярной динамики, распределены в соответствии с некоторой статистической функцией распределения, например отвечающей микроканоническому распределению.


Ограничения применимости метода

Метод молекулярной динамики применим, если длина волны Де Бройля атома (или частицы) много меньше чем межатомное расстояние.
Также классическая молекулярная динамика не применима для моделирования систем состоящих из легких атомов, таких как гелий или водород. Кроме того, при низких температурах квантовые эффекты становятся определяющими и для рассмотрения таких систем необходимо использовать квантовохимические методы. Необходимо, чтобы времена на которых рассматривается поведение системы были больше чем время релаксации исследуемых физических величин.

Временные и пространнственные параметры исследуемых систем

Метод классической молекуряной динамики позволяет рассматривать системы, состоящие из десятков тысяч атомов на временах порядка сотен наносекунд.

История развития метода

Развитие молекулярной динамики шло двумя путями. Первый, обычно называемый классическим, (когда вычисляются траектории атомов) имеет довольно длительную историю. Он восходит к задаче двухчастичного рассеяния, которая может быть решена аналитически. Однако, как хорошо известно, даже уже для трех частиц появляются трудности, затрудняющие аналитическое решение. Примером может служить простая химическая реакция H + H2 = H2 + H. Для такой реакции Hirschfelder, Eyring, Topley в 1936 году провели попытку расчета нескольких шагов вдоль одной из траекторий. Это было за 30 лет до того, как возможности такого расчета стали возможны на компьютере. Позднее классический подход был подкреплен полуклассическими и квантовохимическими расчетами в тех областях, где влияние квантовых эффектов становилось значимым [4]. Вторым путем развития метода молекулярной динамики стало исследование термодинамических и динамических свойств систем. Идеи, лежащие в основу этого пути восходят к работам Ван-дер-Ваальса и Больцмана.

Следует отметить несколько ключевых работ, определивших развитие метода молекулярной динамики. Первая работа, посвященная моделированию методом молекулярной динамики, вышла в 1957 году. Ее авторами были Alder и Waingwright [5]. Целью работы было исследовать фазовую диаграмму системы твердых сфер и в частности области твердого тела и жидкости. В системе твердых сфер частицы взаимодействуют непосредственно при столкновения и двигаются, как свободные частицы между соударениями. Вычисления проводились на компьютерах UNIVAC и на IBM 704.

Статья Dynamics of radiation damage , J.B. Gibson, A. N. Goland, M.Milgram, G.H. Vinhyard [6] выполненная в Брукхейвенской национальной лаборатории и появившаяся в 1960 году была возможно первым примером моделирования с непрерывным потенциалом. В работе для интегрирования использовался метод конечных разностей. Вычисления проводились на IBM 704 и один шаг занимал около минуты. В статье рассматривалось образование дефектов в меди вызванных радиационным повреждением. Тема работы была обусловлена проблемами защиты от ядерного нападения. Эта одна из самых лучших работ по данной тематике!
Aneesur Rahman из Аргонской национальной лаборатории в своей статье 1964 года Correlation in the motion of atoms in luquid argon [7] изучил свойства жидкого аргона, используя потенциал Леннарда-Джонса. Система состояла из 864 атомов. Результаты были получены на компьютере CDC 3600. Программный код, использованный для расчетов, лег в основу многих последующих программ.

Loup Verlet вычислил в 1967 [8] году фазовую диаграмму аргона, используя потенциал Леннарда-Джонса и смоделировал корреляционные функции, чтобы проверить теорию жидкого состояния. В своей работе он разработал процедуру сохранения вычислительных ресурсов, ныне известную, как Verlet neighboor list, а также предложил новый метод численного интегрирования уравнений движения.


Применение

Изначально разработанный в теоретической физике, метод молекулярной динамики получил большое распространение в науке о веществе и, начиная с 1970х годов в биохимии и биофизике. Он играет важную роль в определении структуры белка и уточнении его свойств (см. также кристаллография,ЯМР). Взаимодействие между объектами может быть описано силовым полем (классическая молекулярная динамика), квантовохимической моделью или смешанной теорией, содержащей элементы двух предыдущих.

Наиболее популярными пакетами программного обеспечения для моделирования динамики биологических молекул являются: AMBER, CHARMM (и коммерческая версия CHARMm), GROMACS, GROMOS, и NAMD.

Литература

  • J. A. McCammon, S. C. Harvey (1987) Dynamics of Proteins and Nucleic Acids. Cambridge University Press. ISBN 0—52—135652—0 (paperback); ISBN 0—52—130750 (hardback).
  • D. C. Rapaport (1996) The Art of Molecular Dynamics Simulation. ISBN 0521445612.
  • Daan Frenkel, Berend Smit (2001) Understanding Molecular Simulation. Academic Press. ISBN 0122673514.
  • Oren M. Becker, Alexander D. Mackerell Jr, Benoît Roux, Masakatsu Watanabe (2001) Computational Biochemistry and Biophysics. Marcel Dekker. ISBN 082470455X.
  • Tamar Schlick (2002) Molecular Modeling and Simulation. Springer. ISBN 038795404X.

Источники

  1. 1. J.M. Haile, Molecular dynamics simulation, Wiley, 1992.
  2. M. P. Allen, D. J. D. C. Rapaport The Art of Molecular Dynamics Simulation, 1996.
  3. Tildesley Computer simulation of liquids. Oxford University Press, 1989.
  4. G.C Schatz, A Kopperman // J. Chem. Phys., v.62 , p.2502, (1975)
  5. B.J. Alder, T.E. Waingwright// J. Chem. Phys. v. 27, p.1208, (1957)
  6. J.B. Gibson, A. N. Goland, M.Milgram, G.H. Vinhyard // Phys Rev, v.120, p.1229, (1960)
  7. A Rahman // Phys. Rev. v.136A, p.405, (1964)
  8. L. Verlet // Phys Rev, v.159, p.98, (1967)

Внешние ссылки

 
Начальная страница  » 
А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ы Э Ю Я
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 Home