Логика высказываний

Логика высказываний — раздел логики, занимающийся изучением логических высказываний, операций над ними и их свойств.

Содержание

Основные понятия

Базовыми понятиями логики высказываний являются пропозициональная переменная — переменная, значением которой может быть логическое высказывание, — и (пропозициональная) формула, определяемая индуктивно следующим образом:

  1. Если P — пропозициональная переменная, то P — формула.
  2. Если A — формула, то \neg A — формула.
  3. Если A и B — формулы, то (A \wedge B), (A \vee B) и (A \to B) — формулы.
  4. Других формул нет.

Знаки \neg, \wedge, \vee и \to (отрицание, конъюнкция, дизъюнкция и импликация) называются пропозициональными связками. Подформулой называется часть формулы, сама являющаяся формулой. Собственной подформулой называется подформула, не совпадающая со всей формулой.

Соглашения о скобках

Поскольку в построенных по определению формулах оказывается слишком много скобок, иногда и не обязательных для однозначного понимания формулы, математики приняли соглашения о скобках, по которым некоторые из скобок можно опускать. Записи с опущенными скобками восстанавливаются так:

  • Если опущены внешние скобки, то они восстанавливаются.
  • Если рядом стоят две конъюнкции или дизъюнкции (например, A \wedge B \wedge C), то в скобки заключается сначала самая левая часть (т.е. две подформулы со связкой между ними). (Говорят также, что эти связки левоассоциативны.)
  • Если рядом стоят разные связки, то скобки расставляются согласно приоритетам: \neg, \wedge, \vee и \to (от высшего к низшему).

Когда говорят о длине формулы, имеют в виду длину подразумеваемой (восстанавливаемой) формулы, а не сокращённой записи.

Например: запись A \vee B \wedge \neg C означает формулу (A \vee (B \wedge \neg C)), а её длина равна 10.

Истинностное значение

Оценкой пропозициональных переменных называется функция из множества всех пропозициональных переменных в множество {0, 1} (т.е. множество истинностных значений). Основной задачей логики высказываний является установление истинностного значения формулы, если дана оценка (т.е. определены истинностные значения входящих в неё переменных). Истинностное значение формулы в таком случае определяется индуктивно (с шагами, которые использовались при построении формулы) с использованием таблиц истинности связок.

Формула, которая при всех оценках переменной принимает значение 1, называется тавтологией, значение 0 — противоречием.

Например: формула A \vee \neg A в классическом исчислении высказываний является тавтологией, а A \wedge \neg A — противоречием.

См. также


 
Начальная страница  » 
А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ы Э Ю Я
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 Home