Законы Ньютона

Законы Ньютона — законы классической механики, позволяющие записать уравнения движения для любой механической системы.


Содержание

Формулировка законов Ньютона

Первый закон Ньютона

  • Первый закон Ньютона гласит, что замкнутая система продолжает оставаться в состоянии покоя или прямолинейного равномерного движения. По сути, этот закон постулирует инертность тел. Это может казаться очевидным сейчас, но это не было очевидно на заре исследований природы. Так, например, Аристотель утверждал, что причиной всякого движения является сила, т. е. у него не было движения по инерции.

Второй закон Ньютона

  • На что на самом деле влияет сила, диктует второй закон Ньютона: сила, действующая на систему извне, приводит к ускорению системы F = ma. Заметим, что если система замкнута, то на неё не действует никаких сил, следовательно, по второму закону Ньютона, её ускорение равно нулю, а значит, она может двигаться только с постоянной скоростью. Таким образом, первый закон Ньютона является частным случаем второго.

Третий закон Ньютона

  • Третий закон Ньютона объясняет, что происходит с двумя взаимодействующими телами. Возьмём для примера замкнутую систему, состоящую из двух тел. Первое тело может действовать на второе с некоторой силой F12, а второе — на первое с силой F21. Как соотносятся силы? Третий закон Ньютона утверждает: сила действия равна по модулю и противоположна по направлению силе противодействия, F21 = −F12. Подчеркнём, что эти силы приложены к разным телам, а потому вовсе не компенсируются.

Выводы

Из законов Ньютона сразу же следуют некоторые интересные выводы. Так, третий закон Ньютона говорит, что, как бы тела ни взаимодействовали, они не могут изменить свой суммарный импульс: возникает закон сохранения импульса. Далее, оказывается, что многие силы вокруг нас (в частности, поле сил гравитации) обладают свойством потенциальности: работа внешних сил по переносу тела из одной точки в другую не зависит от конкретного пути (на языке математики: ротор силового поля тождественно равен нулю). В этом случае силу (векторную величину) можно представить как градиент некоторой скалярной величины — потенциала. Для того, чтобы третий закон Ньютона автоматически выполнялся, надо потребовать, чтобы потенциал взаимодействия двух тел зависел только от модуля разности координат этих тел U(|r1-r2|). Тогда возникает закон сохранения суммарной механической энергии взаимодействующих тел:

{m {v}_1^2 \over 2} + {m {v}_2^2 \over 2} + U(|{r}_1 - {r}_2|) = const.

Комментарии к законам Ньютона

Силы инерции

Законы Ньютона, строго говоря, справедливы только в инерциальных системах отсчета. Если мы честно запишем уравнение движения тела в неинерциальной системе отсчета, то оно будет по виду отличаться от второго закона Ньютона. Однако часто, для упрощения рассмотрения, вводят некую фиктивную «силу инерции», и тогда эти уравнения движения переписываются в виде, очень похожем на второй закон Ньютона. Математически здесь все корректно, но с точки зрения физики новую фиктивную силу нельзя рассматривать как нечто реальное, как результат некоторого реального взаимодействия. Ещё раз подчеркнем: «сила инерции» — это лишь удобная параметризация того, как отличаются законы движения в инерциальной и неинерциальной системах отсчета.

Законы Ньютона и лагранжева механика

Законы Ньютона — не самый глубокий уровень формулирования классической механики. В рамках лагранжевой механики имеется одна-единственная формула (запись механического действия) и один-единственный постулат (тела движутся так, чтобы действие было минимальным), и из этого можно вывести все законы Ньютона. Более того, в рамках лагранжева формализма можно легко рассмотреть гипотетические ситуации, в которых действие имеет какой-либо другой вид. При этом уравнения движения станут уже непохожими на законы Ньютона, но сама классическая механика будет по-прежнему применима.

Решение уравнений движения

Уравнение F = ma (т.е. второй закон Ньютона) является дифференциальным уравнением второго порядка, поскольку ускорение есть вторая производная от координаты по времени. Это значит, что эволюцию механической системы во времени можно однозначно определить, если задать её начальные координаты и начальные скорости. Заметим, что если бы уравнения, описывающие наш мир, были бы уравнениями первого порядка, то из нашего мира исчезли бы такие явления, как инерция, колебания, волны.

 
Начальная страница  » 
А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ы Э Ю Я
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 Home